0%

Calculus

u=1504282350,2593290636&fm=27&gp=0.jpg

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

折叠微积分产生

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。

微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。

第二次数学危机和核心是微积分的基础不稳固。柯西的贡献在于,将微积分建立在极限论的基础上。外尔斯特拉斯的贡献在于逻辑地构造了实数论。为此,建立分析基础的逻辑顺序是

实数系——极限论——微积分

微积分学

数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼兹大体上完成的,但不是由他们发明的。–恩格斯

微分和导数的关系是什么?两者的几何意义有什么不同?为什么要定义微分 ?

1.1 导数为什么出现?

曲线下的面积在微积分出现之前是一个很复杂的问题,微积分求解的主要思想是把曲线下的面积划分成了无数个矩形面积之和:

直觉告诉我们,如果 n 越大,则这个近似越准确:

无穷小量就在这里出现了,无穷小量是建立微积分的基础,莱布尼兹介绍微积分的论文就叫做《论深度隐藏的几何学及无穷小与无穷大的分析》。在当时的观点下,无穷小量到底是什么也是有争论的,当时有数学家打比喻:无穷小量就好比山上的灰尘,去掉和增加都没有什么影响”,很显然有人认为这是真实存在的。在具体计算曲面下面积,即我们现在所说的定积分的时候,必然会遇到导数的问题,所以很自然的开始了对导数的定义和讨论。

1.2 导数的古典定义

在曲线上取两点,连接起来,就称为曲线的割线:

割线可以反应曲线的平均变化率,也就是说这一段大概总的趋势是上升还是下降,上升了多少,但是并不精确。

有了切线之后我们进一步去定义导数:

从这张图得出导数的定义 f’(x)=\frac{dy}{dx} ,而 dx 和 dy 被称为 x 和 y 的微分,都为无穷小量,所以导数也被莱布尼兹称为微商(微分之商)。

1.3 无穷小量导致的麻烦

上一节的图实际上是有矛盾的:

所以就切线的定义而言,微积分的基础就是不牢固的。无穷小量的麻烦还远远不止这一些, x^2 的导数是这样计算的:

仔细看看运算过程, dx 先是在约分中被约掉,然后又在加法中被忽略,就是说,先被当作了非0的量,又被当作了0,这就是大主教贝克莱(就是在高中政治书被嘲笑的唯心主义的代表)所攻击的像幽灵一样的数,一会是0一会又不是0。

无穷小量和无穷小量相除为什么可以得到不一样的值?难道不应该都是1?

无穷小量还违反了 阿基米德公理 ,这个才是更严重的缺陷,康托尔证明过,如果阿基米德公理被违背的话会出大问题。

一边是看起来没有错的微积分,一边是有严重缺陷的无穷小量,这就是第二次数学危机。数学的严格性受到了挑战,“对于数学,严格性不是一切,但是没有了严格性就没有了一切”。

1.4 对于古典微积分的总结

切线:通过无穷小量定义了切线
导数:导数就是切线的斜率
微分:微分是微小的增量,即无穷小量

2 基于极限重建微积分

莱布尼兹、欧拉等都认识到了无穷小量导致的麻烦,一直拼命想要修补,但是这个问题要等到200年后,19世纪极限概念的清晰之后才得到解决。

解决办法是,完全摈弃无穷小量,基于极限的概念,重新建立了微积分。

2.1 极限
现在都是用 \epsilon -\delta 语言来描述极限:

可以看到,极限的描述并没有用到什么无穷小量。

2.2 导数的极限定义

用极限重新严格定义了导数,已经脱离了微商的概念,此时,导数应该被看成一个整体。

不过我们仍然可以去定义什么是微分,说到这里,真是有点剧情反转,原来是先定义了微分再有的导数,现在却是先定义了导数再有的微分。

\Delta y=f’(x_0)\Delta x+a\Delta x 可以得出, \Delta y 由两部分组成,通过图来观察一下几何意义:

dy=f’(x)\Delta x ,这是 dy 的定义。
我们令 y=x\implies dy=1\Delta x\implies dx=\Delta x ,这个 dx 的定义。
最后我们可以得到 dy=f’(x)dx\implies \frac{dy}{dx}=f’(x) :

2.3 对于极限微积分的总结

导数:被定义为一个极限,其意义就是变化率
微分:是一个线性函数,其意义就是变化的具体数值
切线:有了导数之后就可以被确定下来了

3.1 古典微积分与极限微积分的对比

古典微积分是先定义微分再定义导数,极限微积分是先定义导数再定义微分。
古典微积分的导数是基于无穷小量定义的,极限微积分的导数是基于极限定义的。
古典微积分的微分是无穷小量,极限微积分的微分是一个线性函数。
古典微积分的定积分是求无穷小矩形面积的和,极限微积分的定积分是求黎曼和。
古典微积分的切线是可以画出来的,极限微积分的切线是算出来的。
古典微积分的建立过程很直观,极限微积分的建立过程更抽象。

古典微积分最大的好处就是很直观,不过也是因为太直观了,所以我们一直都无法忘记它带来的印象,也对我们理解极限微积分造成了障碍。也让我们在实际应用中造成了错误的理解。

3.3 古典微积分的用处

我们应该从古典微积分,以直代曲、化整为零的数学思想出发去开始认识微积分。
并且,莱布尼兹一直认为数学符号应该具有启发性,他设计的微积分符号确实很符合直觉,我们可以继续借用他的符号来描述微积分。

4 无穷小量的逆袭

有的数学家还是对无穷小量念念不忘,最后真的发明了既可以兼容无穷小量又不会出现问题的实数, 超实数 。

基于超实数,数学家又重新定义了微积分,这次定义的微积分又很像莱布尼兹时代的微积分。这门学科被称为非标准分析(对应的,基于我们没有无穷小量的实数体系的微积分,就是标准分析)。

欢迎关注我的其它发布渠道